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A theoretical study is made of a simple design for an underwater shock gun, 
which consists of a chamber in the form of a hollow circular cone, with a spherical 
sector of explosive charge fitted into the apex. When the explosive is initiated 
at the apex, the resulting sector of a spherical blast wave will be diffracted by 
expansion waves moving inwards after the leading shock has emerged from the 
rim of the cone. 

The progress of the expansion wave-fronts is calculated, and the results show 
a surprising inability of the diffraction process to ‘eat into’ the full-strength 
sector of spherical blast. It is found to be possible to design such a gun so that 
it is capable of projecting a high intensity shock-pressure beam over a con- 
siderable range, using only a very small explosive charge. 

1. Introduction 
Reports were received in 1957 that an underwater explosive gun, ‘firing a 

shock wave instead of a bullet ’ had been seen somewhere in Europe being used 
for underwater fishing, and it was reputed to be capable of stunning a large fish 
a t  a considerable range. It was thought that, if thesereports were true, there may 
be other applications of such a device. In  this paper, a possible simple design, 
capable of theoretical study, and which appears to have all the essential pro- 
perties of the reported device, is proposed and studied. 

The ‘ chamber ’ of the proposed gun consists merely of a rigid hollow circular 
cone (see figure 1) containing an explosive charge in the form of a spherical sector 
fitting into the apex of the cone, the point of initiation being at the apex. The 
dimensions of the conical chamber and the mass of the explosive charge must 
satisfy certain conditions which are derived theoretically. 

The principle behind the proposed gun is explained very simply, for if the 
conical chamber were rigid and of infinite extent, the radial distribution of 
pressure behind the leading shock at any time would be precisely the same 
(except for the boundary layer on the wall of the cone) as that obtained from 
detonating the complete spherical charge of which the conical sector forms 
a part. 

When the conical chamber is of finite size, however, the flow behind the leading 
shock, after it leaves the rim of the cone, is diffracted by expansion waves moving 
inwards from the initially undisturbed fluid. The rate a t  which diffraction occurs 
near the leading shock must be studied, therefore, in order to determine the 
minimum size of cone which is necessary to meet the required performance. 
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The results obtained show a surprising inability of the diffraction process to 
‘eat into’ the full-strength sector of spherical blast wave produced by a sector of 
a spherical charge; and thus appear to bear out the reported possibilities of such 
a device. 

The shock diffraction problem studied here is related to the problem of the 
irregular reflexion a t  an air-water interface of the leading blast shock from an 
underwater explosion, as described, for instance, by Keil(1948) and Rosenbaum 
& Snay (1856). At  the air-water interface, the oblique shock may be reflected 
regularly as a centred simple wave or Prandtl-Meyer expansion, but the reflexion 
becomes critical at some stage when the shock is nearly normal to the surface, 
when the flow into the expansion wave (in the appropriate quasi-stationary frame 
of reference) becomes sonic. Beyond this stage, the rarefaction wave diffracts or 
‘eats into ’ the incident shock, in much the same way as in the problem considered 
here. 

This paper was written in the autumn of 1957, and was published as a Ministry 
of Supply report in 1958. Subsequent attempts to trace the origin of the reports 
which initiated the work described in the paper proved unsuccessful. The 
possibility of military applications of the device has prevented open publication 
of the paper until now. 

The original paper, in its limited publication, aroused some interest, parti- 
cularly in the United States, and a variety of possible applications has been 
examined. Experimental measurements have also been made, in the United 
States, with a device designed in accordance with the theory, and the results 
essentially confirm the theory. A description of these experiments will, it is hoped, 
appear soon in an American Journal. 

The original paper was also one of the first publications to draw attention to, 
and to make use of, the geometrical scaling of explosions described above, as 
distinct from the size scaling of explosions. Laporte & Cole (1957) and Campbell 
(1958) also described conical or sector shock-tubes, driven by compressed gas, for 
generating spherical or cylindrical shocks under laboratory conditions; and, 
subsequently, Filler (1960) made measurements in a conical shock tube driven 
by a high explosive charge in the apex. More recently the U.S. Naval Weapons 
Laboratory? has announced the construction, due for completion in October 
1966, of a conical shock-tube 2500ft. in length, for the full-scale simulation of 
nuclear blasts up to 20 kilotons, and at atmospheric conditions appropriate to 
altitudes up to 100,OOOft. above sea level. 

The original 1957 manuscript has been revised and the presentation improved, 
but, substantially, the paper is printed here as it was written in 1957. 

2. The properties of weak shocks in water 
Theoretical studies of the flow properties behind shock waves moving through 

water have been undertaken by many authors, assuming various forms of 
equation of state for the medium. For the present purpose, however, it is both 

t U.S. Naval Weapons Laboratory, Dahlgren, Virginia. 1965. The Conical Shock Tube 
Facility. 
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convenient and sufficient to use simple approximate analytical relationships 
between the flow parameters, relationships which are valid for relatively weak 
shocks. 

Consider, therefore, a shock wave moving with a velocity U into water at  rest, 
in which p ,  denotes the (constant) hydrostatic pressure, p, the density and a, 
the local speed of sound. Immediately behind the shock the particle velocity will 
be u, say, the pressure p ,  the density p and the local speed of sound u. Now con- 
servation of mass demands that 

p ( U - u )  = Po u, (2.1) 

p+p(U-u)Z  =po+pou2 .  ( 2 . 2 )  

and conservation of momentum gives 

The flow parameters would be specified exactly by a third equation, which would 
ensure that energy is conserved, and by the appropriate equation of state. In 
water, however, it  is found that the influence of entropy changes is negligible, 
unless the pressure is extremely high, so that, in water, pressure may generally 
be considered as a function of density alone, and not dependent on entropy. Thus, 
the caloric equation of state of water, cf. Courant & Friedrichs (1948), may be 
taken as 

where A and y are independent of entropy and have the values A = 3000, y = 7 .  
In  this case, therefore, equations (2.1), (2.2) and (2.3) can be solved to give the 
three flow parameters U ,  p and u in terms of p .  Thus, if we write 

(2.3) d P 0 -  1 = 4 ( P / P , ) r -  11, 

6 = (PlPo- 1)/Ay, (2.4) 

then 

and 

where a,, of course, is given by 

3. The decay of spherical shocks in water 
Experimental and theoretical results concerning the decay of shock waves 

originating from spherical underwater explosions are discussed by Cole (19.18). 
For the present purpose it is convenient to use existing results for an expression 
for the peak overpressure of the form 

~p -PO = k( W*/R)", (3.1) 

where W is the mass of the spherical charge, R is the shock radius, and k and 
a are constants depending on the composition of the explosive (k has dimensions). 

Formulae of this type have been fitted to experimental data over limited 
ranges of pressure, and values of the constants for TNT, loose tetryl and pentolite 
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are given by Cole (1948, p. 242). With TNT, for example, if peak overpressure 
is measured in lb. wt.lin.2, W in pounds and R in feet, it  is found that 

k = 2 . 1 6 ~  104 and a = 1-13. 

In this case, the experimental fit was obtained over the pressure range 20,000- 
5001b. wt./in.2 and we assume that the same fit will be approximately valid also 
for lower peak overpressures. 

A length d may be defined, therefore, for any underwater explosion, such that 
the peak overpressure at  a shock radius R is given by 

where 

(3.3) 

(3.3) 

The shock parameters of all underwater explosions, within some limited range of 
overpressure, are then given by (2.5)-(3.8) with 

U = dR/dt (3.4) 

and B = (d/R)". (3.5) 

4. The diffraction problem 
Let us now consider a conical sector of a spherical charge, lying in the apex of 

a hollow, right, circular, rigid cone of slant height b and semi-anglep (see figure l) ,  
which is detonated at the vertex. If the cone were infinitely large, the ensuing 
flow would be precisely the same (neglecting the boundary layer on the walls of 
the cone) as the flow caused by a complete spherical charge of the same radius 
when detonated at the centre. When the cone is of finite size, however, the 
leading shock, after it leaves the rim AA' of the cone, is diffracted by expansion 
waves moving inwards from the initially undisturbed fluid. 

Referring now to figure 1, we consider the flow at t,ime t when the leading shock 
PP' has reached a radius R and the expansion wave-front PD has reached the 
point P on the shock, so that PP' is the surviving portion of the spherical shock 
front which is undisturbed. After a further time 6t the shock will have reached 
a radius R +  6R. Now we know that the expansion wave-front will propagate 
everywhere with a speed equal to the local speed of sound relative to the fluid. 
The particle at P at time t will move to S ,  a radial distance of u St, after a time dt. 
At time t + 6t, therefore, the point of intersection of the expansion wave-front 
and the undiffracted shock will be at Q ,  a point on the undisturbed shock front 
distant a 6t from S. This, of course, assumes that no other (compressive) distur- 
bance reaches the shock at a position in advance of Q. 

From the geometry of figure 1, therefore, we may write 

(6R - u 6t)2 + R2(68)' = a2((ft)2, 

which, in the limit when St + 0, gives the differential equation 

for the rate of advance of the expansion wave-front along the shock. 
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After substituting for U = d R / d t ,  u and a from (2.5), (2.7) and (3.8), it is found 
that 

This may be expanded to give, after substituting 6 = (d /R)a  from (3.5), 

- - _  

FIGURE 1. Diffraction of the leading shock from an underwater explosive shock gun. 

The locus described must originate at  the rim of the cone, A ,  so that R = b when 
0 = 0. With this boundary condition, (4.2) integrates, therefore, to give 

d &a (27  + 2)4 (y  + 5 )  
18 

a0 = (3y + 2)h [(;)"a - ( R )  ] - 
x [(;)"a - 6)7 + 0 [it)"" - (;) "1 , 

and when y = 7, this reduces simply to 

- ae = [G) d t a  -(3""j--[(-) 2 d 4. -(ya]+o[(;):"-(;)""l. (4.3) 4 3 b  
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as the required locus. It may be referred to the Cartesian co-ordinates (z,y) of 
figure 1, by the relations 

x = Rcos(p-O), y = Rsin(p-0). (4.4) 

If the conical sector of explosive has a mass m, the mass W of the sphere, of which 
the sector forms a part, is 

The length d,  therefore, is given by 

w = 2m/( l -cos/3) .  (4.5) 

d = D( 1 - cosp)-+, (4.6) 

where (4.7) 

In order to ensure that the cone will be large enough to contain the explosive, 

(4.8) 
we must have 

+rpE b3( 1 - cos P) > 2m, 

where pE is the density of the explosive. But when the explosive charge nearly 
fills the conical chamber, the shock pressure at the rim AA' of the cone will be 
too large for the expansion (4.2) to be valid. 

5. Analysis of results 

which are reached by the expansion wave-front. If we write 
Let us examine first the nature of the locus of positions along the leading shock 

then the locus (4.3) may be written as 

It is somewhat easier to present the main features of this curve if it  is expressed 
in terms of the Cartesian co-ordinates, defined by (4.4). Now when R is large it is 
found that 

[1+  (2  -a) tan2#] 
X a 

8 
3a3 

+-tan q5 [20 - 18a2- a2+ 3(2 - a) (4 -  3 a )  tan2#] 

(5.3) 
so that the locus may be presented in the form 

4 9 = tan$+-sec2# 
X a 

8 
3a3 

+ - [8 - 6 a - a 2  + 3(2 - a) (4- 3a) tan2#] see2# 
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It will be seen, therefore, from either (5 .2 )  or (5.4) that if Q is negative the 
expansion wave-front moving up the shock will always reach the axis y = 0 and 
the undisturbed portion of the shock wave will disappear. If Q is positive, 
however, the wave-front will not reach the axis y = 0,  unless other (compressive) 
disturbances reach the shock, and the undisturbed part of the shock will pro- 
pagate in precisely the same manner as the leading shock from the equivalent 
spherical charge. 

Thus $J 3 0 is the condition necessary to ensure that some portion of the 
undisturbed spherical shock survives indefinitely; and in the limiting case when 
q5 = 0 the locus is given by 

4 d 8 a  8 y=-( - )  x a x +- (8 -6a-a2)  3a3 

The parameter Q)  defined in (5.1)) is obviously of major interest and its 
behaviour under varying conditions will provide the general principles on which 
the design of an underwater shock gun could be based. 

Remembering that d is a function of P, given by (4.6)) it is found that 

so that aQ/a/? is positive. This means that for a given mass m of a particular 
explosive and a given slant height of cone b, $J will increase monotonically with P. 
It follows, therefore, that if /3 is equal to or greater than a certain critical angle 
P* which makes Q = 0 in (5.1), and is given by the solution of 

+o -(l-cOsP*)-+ = 0)  (5.7) [f I"" 
then, under the assumptions of the theory, there will always survive some portion 
of undisturbed spherical shock which will propagate to infinity like the shock 
from the equivalent spherical charge. 

Again, differentiating (5.1) with respect to m, it is found that 

so that a$J/am is negative. This means that for a given explosive composition 
and a given size and shape of cone, Q will decrease monotonically as m increases. 
It follows, therefore, that if m does not exceed a certain critical mass m* which 
makes q5 = 0 in (5.1) and is given by the solution of the equation 

(5.9) 

then, again, under the assumptions of the theory, there will always survive some 
portion of undisturbed spherical shock which will propagate to infinity like the 
shock from the equivalent spherical charge. 
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Finally, if (5 .1 )  is differentiated with respect to b, it  is found that 

(5.10) 

so that ar$/ab is positive. This means that for a given mass m of a particular 
explosive and a given cone angle 2/?, g5 will increase monotonically with b. It 
follows, therefore, that if b is not not less than a certain critical length b* which 
makes r$ = 0 in (5 .1)  and is given by the equation 

(5.11) 

then, again, under the assumptions of the theory, there will always survive some 
portion of undisturbed spherical shock which will propagate to infinity like the 
shock from the equivalent spherical charge. 

This is an important result so far as the design of such an underwater explosive 
shock gun is concerned. For if we require a specified shock pressure a t  a specified 
distance, then the equivalent spherical charge can be obtained at once from (3 .1) )  
and if we are restricted to a certain charge mass m, the maximum cone angle 2/? 
which will meet the requirements is specified by the relation (4.5). Equation 
(5.1 1 )  will then give the minimum slant height of cone b which will ensure that the 
shock will propagate in the required manner. 

The solution of the equations (5.7), (5.9) and (5 .11)  giving the critical quantities 
/?*, m*,and b* may be obtained in series form. If we write 

n = 3 a / ( 6  + Za), so that a = 6 n / ( 3  - an), (5 .13)  

the series solutions are found to be 

and (5 .15)  

6. Numerical calculations 
To illustrate the significance of the results outlined in $ 5 ,  let us consider a 

specified h o z .  charge of TNT. If (p -po) is measured in lb. wt./in.2, R in feet and 
charge mass in pounds, the shock decay constants are k = 2.16 x lo4, a = 1.13. 
Using these values it is found, from (4 .7) ,  that D = 0.0208ft. 

The critical angle /?* as a function of b, or alternatively, b* as a function of 
/?obtainable from (5.7) and (5 .11) ,  or from the series expansions (5 .13)  and (5 .15) ,  
is given in figure 2 .  The equivalent spherical charge masses W (in oz.) are also 
indicated along the curve. 

The locus of the boundary of the undisturbed shock given by (4 .3)  and (4.4), 
or by the expansion (5.4), is shown in figure 3 for three values of cone semi-angle 
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when b = 1 foot. The corresponding peak overpressures behind the shock at 
various distances are shown on each curve. The critical angle p* in thia case is 
3 1 O 53'. 

A similar curve is displayed in figure 4 for the case b = 2 ft, when the critical 
angle B* is found to be 24' 5'. 

SO" 

70" 

60" 

50" 
G 
?+ 

40" 

3 0" 

20" 

1 0" 

0 1 2 3 4 5  
b* orb (ft.) 

FIGURE 2. Charge: i+ oz. of TNT. Equivalent spherical charge masses 
W (oz.) are indicated. 

7. Conclusions 
Whatever shape of chamber is used in the design of an underwater shock gun, 

it is apparent that the requirements for the emerging shock to propagate to 
comparatively large distances with the least possible attenuation, are that it 
shall emerge sufficiently weak and with appropriate directional properties to 
allow it to withstand diffraction effects. 

A study of the diffraction of a spherical wave leaving a conical chamber has 
illustrated the main features of the problem. The results could be verified 
experimentally a,s follows. To obtain a shock beam from a mass m of explosive 
charge, whose peak pressure is the same as that of a shock propagated from a 
spherical charge mass W ,  the cone angle ,8 is determined at once by (4.5) and the 
minimum slant height of cone b* is given by (5.15). The theoretical beam width 
(2y) at any distance is then given by (5.4). 

It must be stressed that the theory given here determines only how the shock 
front survives the diffraction process, and does not deal with the complete 
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spherical shock wave behind the shock front. It is clear from figure 1 that even 
though the sector QQ' of the shock front is undisturbed, the rarefaction waves 
EQ can penetrate into the conical sector QOQ'. Thus, although a target, struck 
by the undisturbed shock front QQ' will feel the same initial peak pressure as if 

5 (ft.) 

0 20 40 60 80 100 120 140 160 180 200 

FIGURE 3. Charge: i% oz. of TNT, b = 1 foot. Peak overpressures in 
lb.wt./in.2 are indicated. 

2 (ft.) 

FIGURE 4. Charge: i+i 02.  of TNT, b = 2 ft. Peak overpressures in 
lb.wt./in.2 are indicated. 

the complete spherical explosioii had occurred, it will not experience the com- 
plete pressure-time pulse, but instead, a pulse which begins as this but is soon 
cut off by the expansion waves. 

It is natural to ask whether similar results are obtained in the case of air. The 
corresponding theory has been developed for an ideal polytropic gas, and the 
calculations have been made for air (y = 1.4) using a suitable expression, instead 
of (3.1), to represent the peak over-pressure as a function of shock radius in a 
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spherical explosion in air. The results obtained are very similar to those for water 
except that, ceteris paribus, the slant height of cone required in air, at  sea-level 
ambient conditions, is very close to ten times as great as in water. Again, there 
is no information about the penetration of rarefaction waves behind the un- 
disturbed shock front, and it is not possible to say, for instance, whether or not 
this is far more serious in air than in water. 

The response of targets to shock waves from explosions depends, amongst 
other things, on the shape and duration of the pressure-time pulse behind the 
shock front and on the relative values of the fundamental pressures and times 
associated with the explosion and the distortion of the target. In  some cases 
peak-pressure may be the dominant factor which determines whether or not a 
given degree of damage is caused, whilst in other cases the duration or the impulse 
per unit area of the wave (i.e. the area under the pressure-time curve) may become 
important. A general theory of the response of targets to (undisturbed) shock 
waves from spherical explosions in air has been given by Coombs & Thornhill 
(1960). 
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